.. index::
pair: Django ; django-zen-queries
.. _django_zen_queries:
====================================================================================================================================================
**django-zen-queries** Gives you control over which parts of your code are allowed to run queries, and which aren't by Jamie Matthews
====================================================================================================================================================
- https://twitter.com/j4mie
- :ref:`jamie_matthews`
- https://github.com/dabapps/django-zen-queries
- https://github.com/dabapps/django-zen-queries/blob/master/README.md
- https://www.dabapps.com/blog/performance-issues-caused-by-django-implicit-database-queries/
- https://docs.djangoproject.com/en/2.2/topics/db/instrumentation/
Description
=============
Gives you control over which parts of your code are allowed to run queries,
and which aren't.
Testimonial
==============
::
Using zen-queries it became clear very quickly that I could not place
any of my business logic in the template if I wanted to eradicate
my pesky n+1 bug. zen-queries just would not let it happen.
So I rethought the view and as recommended, judicious use of select_related
and prefetch_related from the view level took me from over 4k DB
queries to just 12
@ry_austin
Motivation
=============
::
Explicit is better than implicit (The Zen Of Python)
**The greatest strength of Django's ORM is also its greatest weakness**.
By freeing developers from having to think about when database queries
are run, the ORM encourages developers to not think about when database
queries are run !
This often has great benefits for quick development turnaround, but can
have **major performance implications in anything other than trivially
simple systems**.
Django's ORM makes queries implicit.
The Zen of Python tells us that **explicit is better than implicit**, so let's
be explicit about which parts of our code are allowed to run queries,
and which aren't.
Check out this `blog post `_ (https://www.dabapps.com/blog/performance-issues-caused-by-django-implicit-database-queries/)
for more background.
Example
==========
Imagine a pizza restaurant website with the following models:
.. code-block:: python
class Topping(models.Model):
name = models.CharField(max_length=100)
class Pizza(models.Model):
name = models.CharField(max_length=100)
toppings = models.ManyToManyField(Topping)
And here's the menu view
.. code-block:: python
def menu(request):
pizzas = Pizza.objects.all()
context = {'pizzas': pizzas}
return render(request, 'pizzas/menu.html', context)
Finally, the template:
.. code-block:: django
Pizza Menu
{% for pizza in pizzas %}
- {{ pizza.name }}
{% endfor %}
How many queries are run here ? Well, the answer is easy to see: **it's just one !**
The query emitted by Pizza.objects.all() is all you need to get the
information to show on the menu.
Now: imagine the client asks for each pizza on the menu to include a count
of how many toppings are on the pizza. Easy! Just change the template:
.. code-block:: django
Pizza Menu
{% for pizza in pizzas %}
- {{ pizza.name }} ({{ pizza.toppings.count }})
{% endfor %}
But how many queries are run now ? Well, this is the classic **n queries problem**.
We now have one query to get all our pizzas, and then another query per
pizza to get the toppings count. The more pizzas we have, the slower the
app gets. And we probably won't discover this until the website is in production.
If you were reading a Django performance tutorial, the next step would
be to tell you how to fix this problem (.annotate and Count etc).
But that's not the point.
The example above is just an illustration of how code in different parts
of the codebase, at different levels of abstraction, even possibly
(in larger projects) the responsibility of different developers, can
interact to result in poor performance.
Object-oriented design encourages black-box implementation hiding, but
**hiding the points at which queries are executed is the worst thing you
can do** if your aim is to build high-performance web applications.
So how do we fix this without breaking all our abstractions ?
There are two tricks here:
- Prevent developers from accidentally running queries without realising.
- Encourage **code design that separates fetching data from rendering data**.
This package provides three very simple things:
- A context manager to allow developers to be explicit about where
queries are run.
- A utility to make querysets less lazy.
- Some tools to make it easy to use the context manager with Django templates
and Django REST framework serializers.
To be absolutely clear: this package does not give you any tools to actually
improve your query patterns. It just tells you when you need to do it !
Instructions
=============
To demonstrate how to use **django-zen-queries**, let's go back to our example.
We want to make it impossible for changes to a template to trigger queries.
So, we change our view as follows
.. code-block:: python
def menu(request):
pizzas = Pizza.objects.all()
context = {'pizzas': pizzas}
with queries_disabled():
return render(request, 'pizzas/menu.html', context)
The queries_disabled context manager here does one very simple thing: it
stops any code inside it from running database queries. **At all**.
If they try to run a query, the application will raise a QueriesDisabledError
exception and blow up.
That's almost enough to give us what we need, but not quite.
The code above will always raise a QueriesDisabledError, because the
queryset (Pizza.objects.all()) is lazy. The database query doesn't actually
get run until the queryset is iterated - which happens in the template !
So, django-zen-queries provides a tiny helper function, **fetch**, which
forces evaluation of a queryset:
.. code-block:: python
def menu(request):
pizzas = Pizza.objects.all()
context = {'pizzas': fetch(pizzas)}
with queries_disabled():
return render(request, 'pizzas/menu.html', context)
Now we have exactly what we need: when a developer comes along and adds
{{ pizza.toppings.count }} in the template, it just won't work.
They will be forced to figure out how to use annotate and Count in order
to get the data they need up front, rather than sometime in the future
when customers are complaining that the website is getting slower and slower!
Decorator
==========
You can also use queries_disabled as a decorator to prohibit database
interactions for a whole function or method:
.. code-block:: python
@queries_disabled()
def validate_xyz(pizzas):
...
This also works with Django's method_decorator utility.
Extra tools
==============
As well as the context managers, the package provides some tools to make
it easier to use in common situations:
Render shortcut
-----------------
If you're using the Django render shortcut (as in the example above),
to avoid having to add the context manager to every view, you can
change your import **from django.shortcuts import render** to **from zen_queries import render**.
All the views in that file will automatically be disallowed from running
queries during template rendering.
TemplateResponse subclass
----------------------------
TemplateResponse (and SimpleTemplateResponse) objects are lazy, meaning
that template rendering happens on the way "out" of the Django stack. zen_queries.TemplateResponse
and zen_queries.SimpleTemplateResponse are subclasses of these with
queries_disabled applied to the render method.
You can tell Django's class-based views to use these subclasses instead
of the default TemplateResponse by setting the response_class attribute
on the view to zen_queries.TemplateResponse.
Django REST framework Serializer and View mixins
--------------------------------------------------
Django REST framework serializers are another major source of unexpected
queries. Adding a field to a serializer (perhaps deep within a tree of
nested serializers) can very easily cause your application to suddenly
start emitting hundreds of queries.
zen_queries.rest_framework.QueriesDisabledSerializerMixin can be added
to any serializer to wrap queries_disabled around the .data property,
meaning that the serialization phase is not allowed to execute any queries.
You can add this mixin to an existing serializer instance with zen_queries.rest_framework.disable_serializer_queries
like this: serializer = disable_serializer_queries(serializer).
If you're using REST framework generic views, you can also add a view
mixin, zen_queries.rest_framework.QueriesDisabledViewMixin, which overrides
get_serializer to mix the QueriesDisabledSerializerMixin into your existing
serializer.
This is useful because you may want to use the same serializer class
between multiple views but only disable queries in some contexts, such
as in a list view. Remember that Python MRO is left-right, so the mixin
must come before (to the left of) any base classes that implement
get_serializer.
The view mixin only disables queries on GET requests, so can safely be
used with ListCreateAPIView and similar.
Escape hatch
--------------
If you absolutely definitely can't avoid running a query in a part of
your codebase that's being executed under a queries_disabled block,
there is another context manager called queries_dangerously_enabled
which allows you to temporarily re-enable database queries.
Template Tags
----------------
Block tags for Django's template system are provided which allow you to
enable or disable query execution directly in your templates.
Important note: In order to use the template libary, you must add
"zen_queries" to your INSTALLED_APPS setting.
Then, use {% load zen_queries %} at the top of your template to load
the tag library.
The {% queries_disabled} tag is most useful if you wish to apply
django-zen-queries patterns to a third-party library which provides
customisation via overriding templates, such as the Django admin.
.. code-block:: django
{% load zen_queries %}
{% queries_disabled %}
{% for pizza in pizzas %}
- {{ pizza.name }}
{% endfor %}
{% end_queries_disabled %}
The {% queries_dangerously_enabled %} tag is handy if you are using the
render shortcut or TemplateResponse subclass (see above) but wish to
allow particular parts of your templates to execute queries.
This should be used with caution, and you should wrap only the smallest
possible sections of your template: the precise line or lines that need
to execute the queries.
.. code-block:: django
{% load zen_queries %}
{% queries_dangerously_enabled %}
There are {{ pizzas.count }} pizzas.
{% end_queries_dangerously_enabled %}
Permissions gotcha
=====================
Accessing permissions in your templates (via the {{ perms }} template variable)
can be a source of queries at template-render time.
Fortunately, Django's permission checks are cached by the ModelBackend,
which can be pre-populated by calling request.user.get_all_permissions()
in the view, before rendering the template.
How does it work ?
=====================
It uses the `Database Instrumentation ` (https://docs.djangoproject.com/en/2.2/topics/db/instrumentation/)
features introduced in Django 2.0.
Installation
============
Install from PyPI::
pip install django-zen-queries
Code of conduct
================
For guidelines regarding the code of conduct when contributing to this
repository please review https://www.dabapps.com/open-source/code-of-conduct/